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Abstract

In this paper, we propose a new numerical method to compute the ground-state solution of trapped interacting

Bose–Einstein condensation at zero or very low temperature by directly minimizing the energy functional via finite

element approximation. As preparatory steps we begin with the 3d Gross–Pitaevskii equation (GPE), scale it to get a

three-parameter model and show how to reduce it to 2d and 1d GPEs. The ground-state solution is formulated by

minimizing the energy functional under a constraint, which is discretized by the finite element method. The finite el-

ement approximation for 1d, 2d with radial symmetry and 3d with spherical symmetry and cylindrical symmetry are

presented in detail and approximate ground-state solutions, which are used as initial guess in our practical numerical

computation of the minimization problem, of the GPE in two extreme regimes: very weak interactions and strong

repulsive interactions are provided. Numerical results in 1d, 2d with radial symmetry and 3d with spherical symmetry

and cylindrical symmetry for atoms ranging up to millions in the condensation are reported to demonstrate the novel

numerical method. Furthermore, comparisons between the ground-state solutions and their Thomas–Fermi approxi-

mations are also reported. Extension of the numerical method to compute the excited states of GPE is also presented.
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1. Introduction

Recently, there have been experiments of Bose–Einstein condensation (BEC) in dilute bosonic atoms

(alkali and hydrogen atoms) employing magnetic traps at ultra-low temperatures [7,13,23]. The conden-

sation can consist of few thousand to millions of atoms confined by the trap potential. This peculiar state of

matter, whose existence was postulated back in the 1920s by Bose [12] and Einstein [22], exhibits several

characteristics which set it apart from other homogeneous condensed matter systems [18,30]. In fact,
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besides internal interactions, the macroscopic behavior of BEC matter is highly sensitive to the shape of the

external trapping potential. Theoretical predictions of the properties of BEC matter can now be compared

with experimental data by adjusting some tunable external parameters, such as the trap frequency and/or

aspect ratio. Needless to say, this dramatic progress on the experimental front has stimulated a corre-

sponding wave of activity on both the theoretical and the numerical fronts.

The properties of a BEC at temperatures T very much smaller than the critical temperature Tc [25,30] are
usually described by the nonlinear Schr€oodinger equation (NLSE) for the macroscopic wave function known

as the Gross–Pitaevskii equation (GPE) [27,36]. Note that equations very similar to the GPE also appear in
nonlinear optics where an index of refraction which depends on the light intensity leads to a nonlinear term

like the one encountered in the GPE.

There has been a series of recent studies which deal with the numerical solution of the time-independent

GPE for ground-state and the time-dependent GPE for finding the dynamics of a BEC. For numerical

solution of time-dependent GPE, Bao et al. [9–11] presented a time-splitting spectral method, Ruprecht

et al. [37] and Adhikari et al. [4,5] used the Crank-Nicolson finite difference method to compute the ground-

state solution and dynamics of GPE, Cerimele et. al. [15] proposed a particle-inspired scheme. For ground-

state solution of GPE, Edwards et al. [21] presented a Runge–Kutta type method and used it to solve 1d
and 3d with spherical symmetry time-independent GPE. Adhikari [2,3] used this approach to get the

ground-state solution of GPE in 2d with radial symmetry. Other approaches include an explicit imaginary-

time algorithm used by Cerimele et al. [14] and Chiofalo et al. [16], a direct inversion in the iterated sub-

space (DIIS) used by Schneider et al. [38], and a simple analytical type method proposed by Dodd [20].

In this paper, we propose a new numerical method to compute the ground state solution of Bose–

Einstein condensation by directly minimizing the energy functional through the finite element discretiza-

tion. We begin with the 3d Gross–Pitaevskii equation, make it dimensionless to obtain a three-parameter

model, show how to approximately reduce it to a 2d GPE and a 1d GPE in certain limits. The ground-state
solution is formulated by directly minimizing the energy functional under a constraint. Furthermore we

present in detail the finite element approximation of the minimization problem for 1d, 2d with radial

symmetry and 3d with spherical symmetry and cylindrical symmetry (this is the most popular case in the

current experiments of BEC), and provide approximate ground state solutions, which are used as initial

guess in our practical numerical computation, in two extreme regimes: very weak interactions and strong

repulsive interactions. Numerical results in 1d, 2d with radial symmetry and 3d with spherical symmetry

and cylindrical symmetry for atoms ranging up to millions in the condensation are reported to demonstrate

the numerical method. Furthermore, comparisons between the ground-state solutions and their Thomas–
Fermi approximations are also reported by using our numerical method. Our numerical results show that

the Thomas–Fermi approximation is a �good� approximation to the ground state solution in the strong

repulsive interaction regime, but a �worse� approximation in the medium interaction regime. Convergence

rate of the Thomas–Fermi approximation to the ground-state solution as a function of the number of

atoms in the condensation is also reported by our method. Furthermore, we also extend our method to

compute the excited states of GPE in 1d.

The paper is organized as follows. In Section 2 we begin with the 3d GPE, scale it to get a three-pa-

rameter model, show how to reduce it to lower dimensions. In Section 3 we present a new method to
compute the ground-state solution of a BEC by directly minimizing the energy functional and provide the

approximate ground-state solution in two extreme regimes: very weak interactions and strong repulsive

interactions. In Section 4 we present detailed numerical formula and its finite element approximation for

the ground-state solution of GPE in 1d, 2d with radial symmetry and 3d with spherical symmetry (in these

cases, it is reduced to a 1d problem), and in Section 5 for 3d with cylindrical symmetry (in this case, it is

reduced to a 2d problem). In Section 6 we report on numerical results of the ground-state solution of BEC

in 1d, 2d with radial symmetry and 3d with spherical symmetry as well as cylindrical symmetry. In Section 7

some conclusions are drawn.
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2. Gross–Pitaevskii equation

In this section, we will present the Gross-Pitaevskii equation in three dimension, how to scale it to a

three-parameter model and reduction to lower dimension.

At zero or very low temperature, a BEC is well described by the macroscopic wave function wðx; tÞ
whose evolution is governed by a self-consistent, mean field nonlinear Schr€oodinger equation known as the

Gross–Pitaevskii equation [25,27,36]. If a harmonic trap potential is included, the equation becomes

i�h
owðx; tÞ

ot
¼ � �h2

2m
r2wðx; tÞ þ m

2
x2

xx
2

�
þ x2

y y
2 þ x2

z z
2
�
wðx; tÞ þ NU0jwðx; tÞj2wðx; tÞ; ð2:1Þ

where x ¼ ðx; y; zÞT is the spatial coordinate vector, m is the atomic mass, �h ¼ 1:05� 10�34 J s is the Planck

constant, N is the number of atoms in the condensation, and xx, xy and xz are the angular trap frequencies

in x-, y- and z-direction, respectively. For the following we assume (w.r.o.g.) xx 6xy 6xz. When

xx ¼ xy ¼ xz, the trap potential is isotropic. U0 describes the interaction between atoms in the conden-

sation and has the form

U0 ¼
4p�h2a
m

; ð2:2Þ

where a is the s-wave scattering length (positive for repulsive interaction and negative for attractive

interaction). It is necessary to ensure that the wave function is properly normalized. Specifically, we

requireZ
R3

jwðx; tÞj2 dx ¼ 1: ð2:3Þ

A typical set of parameters used in current experiments with 87Rb is

m ¼ 1:44� 10�25 kg; xx ¼ xy ¼ xz ¼ 20p 1=s; a ¼ 5:1 nm ¼ 5:1� 10�9 m; N ¼ 102–107:

2.1. Dimensionless GPE

Following the physical literatures [19,21,24,28,38], in order to scale the Eq. (2.1) under the normalization

(2.3), we introduce

~tt ¼ xxt; ~xx ¼ x

a0
; ~wwð~xx;~ttÞ ¼ a3=20 wðx; tÞ; with a0 ¼

ffiffiffiffiffiffiffiffiffi
�h

xxm

s
; ð2:4Þ

where a0 is the length of the harmonic oscillator ground state. In fact, here we choose 1=xx and a0 as the
dimensionless time and length units, respectively. Plugging (2.4) into (2.1), multiplying by 1=mx2

xa
1=2
0 , and

then removing all 	 we get the following dimensionless Gross–Pitaevskii equation under the normalization

(2.3) in three dimension

i
owðx; tÞ

ot
¼ � 1

2
r2wðx; tÞ þ V ðxÞwðx; tÞ þ jjwðx; tÞj2wðx; tÞ; ð2:5Þ

where

V ðxÞ ¼ 1

2
x2

�
þ c2y y

2 þ c2z z
2
�
; cy ¼

xy

xx
; cz ¼

xz

xx
; j ¼ U0N

a30�hxx
¼ 4paN

a0
:
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If we plug the typical set of parameters into above parameters, we find the values

a0 
 0:3407� 10�5 m; j 
 0:01881N : 1:881–188; 100:

There are two extreme regimes: one is when j ¼ oð1Þ, then Eq. (2.5) describes a weakly interacting
condensation. The other one is when j � 1, then (2.5) corresponds to a strongly interacting condensation

or to the semiclassical regime.

2.2. Reduction to lower dimension

In the following two cases, the 3d Gross–Pitaevskii equation (2.5) can approximately be reduced to 2d or

even 1d [29,31]. In the case (disk-shaped condensation)

xx 
 xy ; xz � xx; () cy 
 1; cz � 1; ð2:6Þ

the 3d GPE (2.5) can be reduced to 2d GPE with x ¼ ðx; yÞT by assuming that the time evolution does

not cause excitations along the z-axis since they have a large energy of approximately �hxz compared to

excitations along the x- and y-axis with energies of about �hxx. Thus we may assume that the con-

densation wave function along the z-axis is always well described by the ground-state wave function

and set [29,31]

w ¼ w2ðx; y; tÞw3ðzÞ with w3ðzÞ ¼
Z
R2

j/gðx; y; zÞj
2
dxdy

� �1=2

; ð2:7Þ

where /gðx; y; zÞ (see detail in (3.6)) is the ground-state solution of the 3d GPE (2.5). Plugging (2.7) into

(2.5), then multiplying by w�
3ðzÞ (where f � denotes the conjugate of a function f ), integrating with respect to

z over ð�1;1Þ, we get

i
ow2ðx; tÞ

ot
¼ � 1

2
r2w2 þ

1

2
x2

�
þ c2y y

2 þ C
�
w2 þ j

Z 1

�1
w4

3ðzÞdz
� �

jw2j
2w2; ð2:8Þ

where

C ¼ c2z

Z 1

�1
z2jw3ðzÞj

2
dzþ

Z 1

�1

dw3

dz

����
����
2

dz:

Since this GPE is time-transverse invariant, we can replace w2 ! we�iCt=2 which drops the constant C in the

trap potential and obtain the 2d GPE, i.e.,

i
owðx; tÞ

ot
¼ � 1

2
r2w þ 1

2
x2

�
þ c2y y

2
�
w þ j

Z 1

�1
w4

3ðzÞdz
� �

jwj2w: ð2:9Þ

The observables are not affected by this.

In the case (cigar-shaped condensation) [29,31]

xy � xx; xz � xx; () cy � 1; cz � 1; ð2:10Þ

the 3d GPE (2.5) can be reduced to 1d GPE with x ¼ x. Similarly to the 2d case, we derive the 1d GPE

[29,31]

i
owðx; tÞ

ot
¼ � 1

2
wxxðx; tÞ þ

x2

2
wðx; tÞ þ j

Z
R2

w4
23ðy; zÞdy dz

� �
jwðx; tÞj2wðx; tÞ; ð2:11Þ
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where

w23ðy; zÞ ¼
Z 1

�1
/gðx; y; zÞ
�� ��2 dx� �1=2

ð2:12Þ

with /gðx; y; zÞ (see Eq. (3.6)) the ground-state solution of (2.5).

In fact, the 3d GPE (2.5), 2d GPE (2.9) and 1d GPE (2.11) can be written in a unified way [31]

i
owðx; tÞ

ot
¼ � 1

2
r2wðx; tÞ þ VdðxÞwðx; tÞ þ jd jwðx; tÞj2wðx; tÞ; x 2 Rd ; ð2:13Þ

where

jd ¼
j
R
R2 w4

23ðy; zÞdydz;
j
R1
�1 w4

3ðzÞdz;
j;

8<
: VdðxÞ ¼

1
2
x2; d ¼ 1;
1
2
x2 þ c2y y

2
� �

; d ¼ 2;

1
2
x2 þ c2y y

2 þ c2z z
2

� �
; d ¼ 3:

8>><
>>: ð2:14Þ

The normalization condition to (2.13) isZ
Rd

jwðx; tÞj2 dx ¼ 1: ð2:15Þ

3. Ground-state solution

In this section, we will propose a new numerical method by directly minimizing the energy functional via

finite element discretization to compute the ground-state solution of a BEC (2.13). Furthermore we will also

provide approximate ground-state solutions in two extreme regimes: very weak interactions and strong

repulsive interactions.

3.1. Minimization problem

To find a stationary solution of (2.13), we write

wðx; tÞ ¼ e�ilt/ðxÞ; ð3:1Þ

where l is the chemical potential of the condensation and / a real-valued function independent of time.

Inserting into (2.13) gives the following equation for /ðxÞ

l/ðxÞ ¼ � 1

2
r2/ðxÞ þ VdðxÞ/ðxÞ þ jd j/ðxÞj2/ðxÞ; x 2 Rd ; ð3:2Þ

under the normalization conditionZ
Rd

j/ðxÞj2 dx ¼ 1: ð3:3Þ

This is a nonlinear eigenvalue problem under a constraint and any eigenvalue l can be computed from its

corresponding eigenfunction / by

l ¼ ljð/Þ ¼
Z
Rd

1

2
r/ðxÞj j2

�
þ VdðxÞ/2ðxÞ þ jd/

4ðxÞ
�
dx: ð3:4Þ
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The Bose–Einstein condensation ground-state wave function /gðxÞ is found by solving this eigenvalue

problem under the normalization condition (3.3) with the minimized chemical potential lg. Usually, the

ground-state problem is formulated variationally. Define the energy functional

Ejð/Þ :¼
Z
R3

1

2
r/j j2

�
þ VdðxÞ /j j2 þ j

2
/j j4

�
dx: ð3:5Þ

It is easy to see that critical points of the energy functional Ejð/Þ under the constraint (3.3) are eigen-

functions of the nonlinear eigenvalue problem (3.2) under the constraint (3.3) and vice versa. In fact, (3.2)

can be viewed as the Euler–Lagrange equation of the energy functional Ejð/Þ under the constraint (3.3). To
compute the ground state /g, we solve the minimization problem

(V) Find ðlg;/g 2 V Þ such that

Ejð/gÞ ¼ min
/2V

Ejð/Þ; lg ¼ ljð/gÞ ¼ Ejð/gÞ þ
Z
Rd

jd

2
/4

gðxÞdx; ð3:6Þ

where the set V is defined as

V ¼ / jEjð/Þ
�

< 1;

Z
Rd

j/ðxÞj2 dx ¼ 1

�
:

In non-rotating BEC, the minimization problem (3.6) has a unique real valued nonnegative ground-

state solution /gðxÞ > 0 for x 2 Rd [32]. In physical literatures, the minimizer of (3.6) was obtained by

either the Runge–Kutta type method [2,3,21] or the imaginary time method [6,14,16]. Here we present

a method by directly minimizing the energy functional Ejð/Þ through the finite element discretization

[17].

3.2. Approximation in a bounded domain

The eigenvalue problem (3.2) and the minimization problem (3.6) are defined in Rd . In practical com-

putation, usually they are approximated by problems defined on a bounded computational domain. Since

the full wave function must vanish exponentially fast as jxj ! 1 and due to symmetry, choosing

R1; . . . ;Rd > 0 sufficiently large and denoting

XR ¼ ½0;R1� � � � � � ½0;Rd �;

then the minimization problem (3.6) can be approximated by

(V R) Find ðlR
g ;/

R
g 2 VgÞ such that

ER
jð/

R
g Þ ¼ min

/2Vg
ER

jð/Þ; lR
g ¼ ER

jð/
R
g Þ þ

Z
XR

jd

2
/R

g ðxÞ
h i4

dx; ð3:7Þ

where the set Vg and the functional ER
jð/Þ are defined as

Vg ¼ / jER
jð/Þ

�
< 1; 2d

Z
XR

j/ðxÞj2 dx ¼ 1; /ðR1; x2; . . . ; xdÞ ¼ � � � ¼ /ðx1; . . . ; xd�1;RdÞ ¼ 0

�
;

ER
jð/Þ ¼ 2d

Z
XR

1

2
r/ðxÞj j2

�
þ VdðxÞ /ðxÞj j2 þ jd

2
/ðxÞj j4

�
dx:
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3.3. Discretization

The functional ER
jð/Þ in (3.7) (or Ejð/Þ in (3.6)) can be discretized by the finite element method [17], finite

difference method [34] or spectral method [26]. Here we use the finite element method because it can easily

keep the good properties of ER
jð/Þ, e.g., positive, coercive and weakly lower semicontinuous when jd P 0,

on the unit sphere in finite dimensions. Let

~VVg ¼ / jER
jð/Þ

�
< 1; /ðR1; x2; . . . ; xdÞ ¼ � � � ¼ /ðx1; . . . ; xd�1;RdÞ ¼ 0

�
and ~VV h

g be a finite dimensional subspace of ~VVg [17], i.e., ~VV h
g � ~VVg. Then the finite dimensional set

V h
g ¼ /h 2 ~VV h

g j2d
Z

XR
j/hðxÞj2 dx

�
¼ 1

�

is a subset of Vg, i.e., V h
g � Vg. Thus the minimization problem (3.7) can be approximated by

(V R;h) Find ðlR;h
g ;/R;h

g 2 V h
g Þ such that

ER
jð/

R;h
g Þ ¼ min

/h2V h
g

ER
jð/

hÞ; lR;h
g ¼ ER

jð/
R;h
g Þ þ

Z
XR

jd

2
/R;h

g ðxÞ
h i4

dx: ð3:8Þ

Introducing a functional with a Lagrange multiplier corresponding to the normalization condition (3.3),
i.e.,

~EER
jð/

h; kÞ ¼ ER
jð/

hÞ � k 2d
Z

XR
j/hðxÞj2 dx

�
� 1

�
� F ðUh; kÞ; /h 2 ~VV h

g ; k 2 R;

where /hðxÞ ¼ WhðxÞ � Uh �
PM

j¼1 Wh
j ðxÞUh

j with WhðxÞ ¼ ðWh
1ðxÞ; . . . ;Wh

MðxÞÞ
T
a basis of the finite element

subspace ~VV h
g and Uh ¼ ðUh

1; . . . ;U
h
MÞ

T
the unknowns of /hðxÞ [17], then the minimizer /R;h

g ¼ WhðxÞ � UR;h
g of

the minimization problem (3.8) is a critical point of the functional ~EER
jð/

h; kÞ. This implies

rUhF ðUh; kÞ
��
Uh¼UR;h

g
¼ 0;

oF ðUh; kÞ
ok

����
Uh¼UR;h

g

¼ 0: ð3:9Þ

The nonlinear system (3.9) is solved by Newton�s method [35] or quasi-Newton�s method [35] with a proper

choice of the initial data ð/R;h
g Þð0Þ ¼ WhðxÞ � ðUR;h

g Þð0Þ and kð0Þ is the least square solution of

rUhF ðUh; kÞ
��

Uh¼ðUR;h
g Þð0Þ;k¼kð0Þð Þ ¼ 0:

The initial guess ð/R;h
g Þð0Þ is chosen as the interpoltant on ~VV h

g of the approximate ground-state solution for

very weak interactions (4.13) or strong repulsive interactions (4.15) when jd is not too big or not too small,

respectively. These approximate ground-state solutions are given in the next subsection. Another way to
choose the initial guess is to use a continuation technique, i.e., use the numerical solution of the ground

state function for a small jd as initial guess for computing the solution of a larger jd .

3.4. Approximate ground-state solution

Here we present the approximate ground-state solution of (3.2) in two extreme regimes: very weak in-

teractions and strong repulsive interactions. These approximate ground-state solutions are used as initial

guess ð/R;h
g Þð0Þ in our practical computation of the minimization problem (3.8) (or (3.9)).

For a very weakly interacting condensation, i.e., jd ¼ oð1Þ, we drop the nonlinear term (i.e., the last term

on the right-hand side of (3.2)) and get [31]
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l/ðxÞ ¼ � 1

2
r2/ðxÞ þ VdðxÞ/ðxÞ; x 2 Rd : ð3:10Þ

The ground-state solution of (3.10) is

lw
d ¼ 1

2

1;
1þ cy ;
1þ cy þ cz;

8<
: /w

d ðxÞ ¼
1

ðpÞd=4
e�x2=2; d ¼ 1;
c1=4y e�ðx2þcy y

2Þ=2; d ¼ 2;

ðcyczÞ
1=4

e�ðx2þcy y
2þczz

2Þ=2; d ¼ 3:

8><
>: ð3:11Þ

This can be viewed as an approximate ground-state solution of (2.13) in the case of a very weakly inter-
acting condensation.

For strong repulsive interactions, i.e., jd � 1, we drop the diffusion term (i.e., the first term on the right-

hand side of (3.2)) corresponding to the Thomas–Fermi approximation [31]:

l/ðxÞ ¼ VdðxÞ/ðxÞ þ jd j/ðxÞj2/ðxÞ; x 2 Rd ; ð3:12Þ

The ground-state solution of (3.12) is the compactly supported function /s
dðxÞ:

ls
d ¼

1
2

3j1
2

� �2=3
; d ¼ 1;

j2cy
p

� �1=2
; d ¼ 2;

1
2

15j3cycz
4p

� �2=5

; d ¼ 3;

8>><
>>: ð3:13Þ

/s
dðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðls

d � VdðxÞÞ=jd

p
VdðxÞ < ls

d ;
0 otherwise:

�
ð3:14Þ

Remark 3.1. As indicated in Fig. 6, an interface layer correction has to be constructed in order to improve

the approximation quality in the Thomas–Fermi regime (i.e., jd � 1). For a convergence proof of /s
3 ! /g

as j3 ! þ1 (without convergence rate) we refer to [32]. In Section 6, these convergence rates are reported

based on our numerical solutions.

4. Ground-state solution in 1d, 2d with radial symmetry and 3d with spherical symmetry

In this section, we present detailed numerical formula and its finite element approximation for the

ground-state solution of GPE in 1d, 2d with radial symmetry (i.e., cy ¼ 1) and 3d with spherical symmetry
(i.e., cy ¼ cz ¼ 1). In these cases, the problem is reduced to 1d. Due to symmetry, the GPE (2.13) essentially

collapses to a 1d problem with r ¼ jxj 2 ½0;1Þ for d ¼ 1; 2; 3

i
owðr; tÞ

ot
¼ � 1

2

1

rd�1

o

or
rd�1 o

or
wðr; tÞ

� �
þ r2

2
wðr; tÞ þ jd jwðr; tÞj2wðr; tÞ; ð4:1Þ

owð0; tÞ
or

¼ 0; wðr; tÞ ! 0; when r ! 1: ð4:2Þ

The normalization condition collapses to

Cd

Z 1

0

jwðr; tÞj2rd�1 dr ¼ 1; ð4:3Þ
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where

Cd ¼
2; d ¼ 1;
2p; d ¼ 2;
4p; d ¼ 3:

8<
:

4.1. Minimization problem

The eigenvalue problem (3.2) collapses to

l/ðrÞ ¼ � 1

2

1

rd�1

d

dr
rd�1 d

dr
/ðrÞ

� �
þ r2

2
/ðrÞ þ jd j/ðrÞj2/ðrÞ; 0 < r < 1; ð4:4Þ

/0ð0Þ ¼ 0; /ðrÞ ! 0; when r ! 1; ð4:5Þ

under the normalization condition

Cd

Z 1

0

j/ðrÞj2rd�1 dr ¼ 1: ð4:6Þ

The minimization problem (3.6) collapses to

(V) Find ðlg;/g 2 V Þ such that

Ejð/gÞ ¼ min
/2V

Ejð/Þ; lg ¼ Ejð/gÞ þ Cd

Z 1

0

jd

2
/4

gðrÞrd�1 dr; ð4:7Þ

where the set V and the energy functional Ejð/Þ are defined as

V ¼ / jEjð/Þ
�

< 1; Cd

Z 1

0

j/ðrÞj2rd�1 dr ¼ 1

�
;

Ejð/Þ ¼ Cd

Z 1

0

rd�1

2
½/0ðrÞ�2

h
þ r2/2ðrÞ þ jd/

4ðrÞ
i
dr:

4.2. Approximation in a bounded domain

The eigenvalue problem (4.4) and (4.5) and the minimization problem (4.7) are defined in a semi-infinite

interval ð0;1Þ. In practical computation, usually they are approximated by problems defined on a finite

interval. Since the full wave function must vanish exponentially fast as r ! 1, choosing R > 0 sufficiently

large, then the eigenvalue problem (4.4) and (4.5) can be approximated by

l/ðrÞ ¼ � 1

2

1

rd�1

d

dr
rd�1 d

dr
/ðrÞ

� �
þ r2

2
/ðrÞ þ jd j/ðrÞj2/ðrÞ; 0 < r < R; ð4:8Þ

/0ð0Þ ¼ 0; /ðRÞ ¼ 0; ð4:9Þ

under the normalization condition

Cd

Z R

0

j/ðrÞj2rd�1 dr ¼ 1: ð4:10Þ
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Similarly the minimization problem (4.7) can be approximated by

(V R) Find ðlR
g ;/

R
g 2 VgÞ such that

ER
jð/

R
g Þ ¼ min

/2Vg
ER

jð/Þ; lR
g ¼ ER

jð/
R
g Þ þ Cd

Z R

0

jd

2
/R

g ðrÞ
h i4

rd�1 dr; ð4:11Þ

where the set Vg and the functional ER
jð/Þ are defined as

Vg ¼ / jER
jð/Þ

�
< 1; Cd

Z R

0

j/ðrÞj2rd�1 dr ¼ 1; /ðRÞ ¼ 0

�
;

ER
jð/Þ ¼ Cd

Z R

0

rd�1

2
½/0ðrÞ�2

h
þ r2/2ðrÞ þ jd/

4ðrÞ
i
dr:

4.3. Finite element approximation

Assume that

0 ¼ r0 < r1 < r2 < � � � < rM ¼ R

is a partition of the interval ½0;R� with mesh size h [17]. Let

~VV h
g ¼ /hðrÞ 2 Cð½0;R�Þ j/hðrÞj½rj;rjþ1� 2 P1ð½rj; rjþ1�Þ; 0

n
6 j6M � 1; /hðRÞ ¼ 0

o
;

V h
g ¼ /h 2 ~VV h

g jCd

Z R

0

j/hðrÞj2rd�1 dr
�

¼ 1

�
;

where P1 denotes piecewise linear polynomials. Then the finite element approximation of the problem (4.7) is

(V R;h) Find ðlR;h
g ;/R;h

g 2 V h
g Þ such that

ER
jð/

R;h
g Þ ¼ min

/2V h
g

ER
jð/Þ; lR;h

g ¼ ER
jð/

R;h
g Þ þ Cd

Z R

0

jd

2
/R;h

g ðrÞ
h i4

rd�1 dr: ð4:12Þ

4.4. Approximate ground-state solution

In these cases, the approximate ground-state solution collapses to the following. For a very weakly

interacting condensation, i.e., jd ¼ oð1Þ, the ground-state solution is

lw
d ¼ d

2
; /w

d ðrÞ ¼
1

pd=4
e�r2=2; d ¼ 1; 2; 3: ð4:13Þ

For strong repulsive interactions, i.e., jd � 1, the ground-state solution is

ls
d ¼

1

2

ððd þ 1Þ2 � 1Þjd

Cd

" #2=ðdþ2Þ

; d ¼ 1; 2; 3; ð4:14Þ

/s
dðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ls
g � r2=2

� �
=jd

r
r2 < 2ls

d ;

0 otherwise;

8<
: d ¼ 1; 2; 3: ð4:15Þ
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5. Ground-state solution in 3d with cylindrical symmetry

In this section, we present detailed numerical formula and its finite element approximation for the

ground-state solution of GPE in 3d with cylindrical symmetry (i.e., cy ¼ 1). In this case, the problem is

reduced to 2d. Due to symmetry, the GPE (2.13) essentially collapses to a 2d problem with

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
2 ½0;1Þ

i
owðr; z; tÞ

ot
¼ � 1

2

1

r
o

or
r
ow
or

� ��
þ o2w

oz2

�
þ 1

2
ðr2 þ c2z z

2Þw þ jjwj2w; 0 < r; z < 1; ð5:1Þ

owð0; z; tÞ
or

¼ 0; 06 z < 1;
owðr; 0; tÞ

oz
¼ 0; 06 r < 1; ð5:2Þ

wðr; z; tÞ ! 0; when r þ jzj ! 1: ð5:3Þ

The normalization condition collapses to

4p
Z 1

0

Z 1

0

jwðr; z; tÞj2rdrdz ¼ 1: ð5:4Þ

5.1. Minimization problem

The eigenvalue problem (3.2) collapses to

l/ðr; zÞ ¼ � 1

2

1

r
o

or
r
o/
or

� ��
þ o2/

oz2

�
þ 1

2
ðr2 þ c2z z

2Þ/ þ jj/j2/; 0 < r; z < 1; ð5:5Þ

o/ð0; zÞ
or

¼ 0; 06 z < 1;
o/ðr; 0Þ

oz
¼ 0; 06 r < 1; ð5:6Þ

/ðr; zÞ ! 0; when r þ jzj ! 1; ð5:7Þ

under the normalization condition

4p
Z 1

0

Z 1

0

j/ðr; zÞj2rdrdz ¼ 1: ð5:8Þ

The minimization problem (3.6) collapses to
(V) Find ðlg;/g 2 V Þ such that

Ejð/gÞ ¼ min
/2V

Ejð/Þ; lg ¼ Ejð/gÞ þ 4p
Z 1

0

Z 1

0

j
2

/4
gðr; zÞrdrdz; ð5:9Þ

where the set V and the functional Ejð/Þ are defined as

V ¼ / jEjð/Þ
�

< 1; 4p
Z 1

0

Z 1

0

j/ðr; zÞj2rdrdz ¼ 1

�
;

Ejð/Þ ¼ 4p
Z 1

0

Z 1

0

r
2

/2
r ðr; zÞ

�
þ /2

z ðr; zÞ þ ðr2 þ c2z z
2Þ/2ðr; zÞ þ j/4ðr; zÞ

 
drdz:
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5.2. Approximation in a bounded domain

The eigenvalue problem (5.5)–(5.7) and the minimization problem (5.9) are defined in the first quadrant

of the rz-plane. In practical computation, usually they are approximated by problems defined on a bounded

domain. Since the full wave function must vanish exponentially fast as r þ jzj ! 1, choosing R > 0 and

Z > 0 sufficiently large, then the eigenvalue problem (5.5)–(5.7) can be approximated by

l/ðr; zÞ ¼ � 1

2

1

r
o

or
r
o/
or

� ��
þ o2/

oz2

�
þ 1

2
ðr2 þ c2z z

2Þ/ þ jj/j2/; 0 < r < R; 0 < z < Z; ð5:10Þ

o/ð0; zÞ
or

¼ 0; 06 z6 Z;
o/ðr; 0Þ

oz
¼ 0; 06 r6R; ð5:11Þ

/ðR; zÞ ¼ 0; 06 z6 Z; /ðr; ZÞ ¼ 0; 06 r6R; ð5:12Þ

under the normalization condition

4p
Z R

0

Z Z

0

j/ðr; zÞj2rdzdr ¼ 1: ð5:13Þ

Similarly the minimization problem (5.9) can be approximated by

(V R) Find ðlR
g ;/

R
g 2 VgÞ such that

ER
jð/

R
g Þ ¼ min

/2Vg
ER

jð/Þ; lR
g ¼ ER

jð/
R
g Þ þ 4p

Z R

0

Z Z

0

j
2

/R
g ðr; zÞ

h i4
rdrdz; ð5:14Þ

where the set Vg and the functional JRð/Þ are defined as

Vg ¼ / jER
jð/Þ

�
< 1; 4p

Z R

0

Z Z

0

j/ðr; zÞj2rdzdr ¼ 1; /ðR; zÞ ¼ 0; 06 z6Z; /ðr;ZÞ ¼ 0; 06 r6 R
�
;

ER
jð/Þ ¼ 4p

Z R

0

Z Z

0

r
2

/2
r ðr; zÞ

�
þ /2

z ðr; zÞ þ ðr2 þ c2z z
2Þ/2ðr; zÞ þ j/4ðr; zÞ

 
dzdr:

5.3. Finite element approximation

Assume that

0 ¼ r0 < r1 < r2 < � � � < rM ¼ R; 0 ¼ z0 < z1 < z2 < � � � < ZN ¼ Z;

is a partition of the rectangle ½0;R� � ½0; Z� with mesh size h [17]. Let

~VV h
g ¼ /hðr; zÞ 2 Cð½0;R�

n
� ½0; Z�Þ j/hðr; zÞj½rj;rjþ1��½zl;zlþ1� 2 Q1ð½rj; rjþ1� � ½zl; zlþ1�Þ; 06 j6M

� 1; 06 l6N � 1; /hðR; zÞ ¼ 0; 06 z6 Z; /hðr; ZÞ ¼ 0; 06 r6 R
o
;

V h
g ¼ /h 2 ~VV h

g j4p
Z R

0

Z Z

0

j/hðr; zÞj2rdzdr
�

¼ 1

�
;
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where Q1 denotes all bilinear polynomials. Then the finite element approximation of the problem (5.14) is

(V R;h) Find ðlR;h
g ;/R;h

g 2 V h
g Þ such that

ER
jð/

R;h
g Þ ¼ min

/2V h
g

ER
jð/Þ; lR;h

g ¼ ER
jð/

R;h
g Þ þ 4p

Z R

0

Z Z

0

j
2

/R;h
g ðr; zÞ

h i4
rdrdz: ð5:15Þ

5.4. Approximate ground-state solution

In this case, the approximate ground-state solution collapses to the following. For a very weakly in-

teracting condensation, i.e., j3 ¼ j ¼ oð1Þ, the ground-state solution is

lw
3 ¼ 1þ cz

2
; /w

3 ðr; zÞ ¼
c1=4z

ðpÞ3=4
e�ðr2þczz

2Þ=2: ð5:16Þ

For strong repulsive interactions, i.e., j3 ¼ j � 1, the ground-state solution is

ls
3 ¼

1

2

15jcz
4p

� �2=5

; ð5:17Þ

/s
3ðr; zÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðls

3 � ðr2 þ c2z z
2Þ=2Þ=j

p
r2 þ c2z z

2 < 2ls
3;

0 otherwise:

�
ð5:18Þ

6. Numerical results

In this section we shall report on numerical error analysis of our method, numerical ground-state so-

lutions of (2.13) in 1d, 2d with radial symmetry and 3d with spherical symmetry as well as cylindrical
symmetry. Furthermore we also compare the numerical ground-state solution of (2.13) in 3d and the

corresponding Thomas–Fermi approximation (5.18). Convergence rates of the Thomas–Fermi approxi-

mations to their exact counterparts are also reported.

6.1. Numerical error analysis

In this subsection, we study numerically the convergence rate of the finite element discretization to the

minimization problem (3.7) in 1d. We choose d ¼ 1 and jd ¼ j1 ¼ 62:742 in (4.11). We compute a nu-

merical solution of (4.11) in 1d on X ¼ ½0; 8� by using the discretization (4.12) with a very fine mesh, e.g.,

h ¼ 1=128, as the ‘‘exact’’ ground-state solution /gðxÞ. Table 1 shows the errors Ejð/h
gÞ � Ejð/gÞ, lh

g � lg,

max j/h
gðxÞ � /gðxÞj, k/h

g � /gkL2ðXÞ, kð/
h
gÞ

2 � ð/gÞ
2kL1ðXÞ and k/h

g � /gkH1ðXÞ for different mesh sizes h. Here

we use the standard Sobolev space norms [1].
From Table 1, we observe that the approximate energy Ejð/h

gÞ, chemical potential lh
g, ground-state

solution /h
g, and atom density function ð/h

gÞ
2
converge to Ejð/gÞ, lg, /g in maximum norm and L2-norm,

and ð/gÞ
2
in L1-norm, respectively, at second order convergence rate when the mesh size h goes to zero.

Furthermore /h
g converges to /g in H 1-norm at first order convergence rate.

6.2. Results in 1d, 2d with radial symmetry and 3d with spherical symmetry

An interesting property of the condensation wave function in these cases is its root mean square (rms)

size rrms defined by
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r2rms ¼ hr2i ¼ Cd

Z 1

0

r2/2ðrÞrd�1 dr; d ¼ 1; 2; 3: ð6:1Þ

In our computations, we choose R ¼ 16 in (4.8) with a uniform partition of the interval ½0;R� of mesh size

h ¼ 1=50 in (4.12).

Fig. 1 shows the ground-state condensation wave function /gðrÞ (with /gð�rÞ ¼ /gðrÞ for r 2 R in 1d)

versus r and the chemical potential lg for different jd , and Table 2 lists /gð0Þ, rrms, lg versus jd for d ¼ 1.

For comparison, we also list the chemical potential lg obtained by the Thomas–Fermi approximation

(TFA) in (4.14). Furthermore Fig. 2 and Table 3 show similar results for d ¼ 2, and Fig. 3 and Table 4 for

d ¼ 3.

From Figs. 1–3 and Tables 2–4, we can see that the chemical potential lg and the root mean square size
will increase when the interaction coefficient jd (i.e., the number of atoms in the condensation) is increasing.

On the other hand, the peak of the ground-state solution /gð0Þ will decrease. If we use the typical set of

parameter values in Section 2, a j3 ¼ 31,371 corresponds to a condensation population of N 
 1,667,800,

i.e., approximately one and a half millions atoms in the condensation. Furthermore the Thomas–Fermi

Table 1

Numerical error analysis of the finite element discretization (4.12)

h ¼ 1
2

h ¼ 1
4

h ¼ 1
8

h ¼ 1
16

h ¼ 1
32

Ejð/h
gÞ � Ejð/gÞ 6.528E) 4 1.570E) 4 3.878E) 5 9.560E) 6 2.274E) 6

lh
g � lg 3.462E) 4 8.073E) 5 1.986E) 5 4.887E) 6 1.160E) 6

max j/h
gðxÞ � /gðxÞj 3.222E) 3 8.450E) 4 2.091E) 4 5.300E) 5 1.359E) 5

k/h
g � /gkL2ðXÞ 2.177E) 3 5.290E) 4 1.323E) 4 3.394E) 5 9.295E) 6

kð/h
gÞ

2 � ð/gÞ
2kL1ðXÞ 1.042E) 3 2.633E) 4 6.579E) 5 1.700E) 5 4.927E) 6

k/h
g � /gkH1ðXÞ 2.493E) 2 1.246E) 2 6.218E) 3 3.091E) 3 1.508E) 3

Fig. 1. Ground-state condensate solution in 1d (d ¼ 1). (a) Wave function /gðrÞ versus r for j1 ¼ �12:5484, )6.2742, )2.5097, 0,
3.1371, 12.5484, 31.371, 62.742, 156.855, 313.71, 627.42, 1254.8 (in order of increasing width). (b) Chemical potential lg versus jd .
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approximation gives accurate chemical potential lg only when the interaction jd is very big and poor

approximation for intermediate values of jd (cf. Tables 2–4).

Here we also report the convergence rates of the Thomas–Fermi approximations /s
d and ls

d to the exact

ground-state solution /g and lg, respectively, as 1=jd ! 0. Tables 5–7 list these results for d¼ 1, 2 and 3,
respectively.

From Tables 5–7, we observed numerically the convergence rates of the Thomas–Fermi approximations

as following: (1) in 1d: jlg � ls
1j 
 Oð1=j0:57

1 Þ, k/2
g � ð/s

1Þ
2kL1 
 Oð1=j0:72

1 Þ, k/g � /s
1kL2 
 Oð1=j0:43

1 Þ and

k/g � /s
1kL4 
 Oð1=j0:41

1 Þ as 1=j1 ! 0; (2) in 2d: jlg � ls
2j 
 Oð1=j0:40

2 Þ, k/2
g � ð/s

2Þ
2kL1 
 Oð1=j0:58

2 Þ,
k/g � /s

2kL2 
 Oð1=j0:31
2 Þ and k/g � /s

2kL4 
 Oð1=j0:35
2 Þ as 1=j2 ! 0; and (3) in 3d: jlg � ls

3j 
 Oð1=j0:31
3 Þ,

k/2
g � ð/s

3Þ
2kL1 
 Oð1=j0:45

3 Þ, k/g � /s
3kL2 
 Oð1=j0:24

3 Þ and k/g � /s
3kL4 
 Oð1=j0:32

3 Þ as 1=j3 ! 0.

Table 2

Ground-state chemical potential lg, maximum value of the wave function /gð0Þ and root mean square size rrms versus the interaction

coefficient jd in 1d (d ¼ 1)

j1 /gð0Þ rrms lg

Numerical TFA

)12.5484 1.7718 0.1444 )19.669 NA

)6.2742 1.2654 0.2810 )4.9553 NA

)2.5097 0.9132 0.5133 )0.8061 NA

0 0.7511 0.7071 0.5000 NA

3.1371 0.6459 0.8960 1.5265 NA

12.5484 0.5297 1.2454 3.5965 3.538

31.371 0.4556 1.6416 6.5526 6.517

62.742 0.4060 2.0495 10.369 10.345

156.855 0.3485 2.7679 19.0704 19.056

313.71 0.3105 3.4823 30.259 30.249

627.42 0.2766 4.3847 48.024 48.018

1254.8 0.2464 5.5228 76.226 76.222

Fig. 2. Ground-state condensate solution in 2d with radial symmetry. (a) Wave function /gðrÞ versus r for j2 ¼ �5:8, )5.5, )4.5,
)2.5097, 0, 12.5484, 62.742, 313.71, 1254.8 (in order of increasing width). (b) Chemical potential lg versus jd .
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6.3. Results in 3d with cylindrical symmetry

The interesting properties of the condensation wave function in this case are its root mean square (rms)

sizes in r- and z-direction rrms and zrms, respectively, defined by

r2rms ¼ hr2i ¼ 4p
Z 1

0

Z 1

0

r2w2ðrÞrdrdz; ð6:2Þ

z2rms ¼ hz2i ¼ 4p
Z 1

0

Z 1

0

z2w2ðrÞrdrdz: ð6:3Þ

Fig. 3. Ground-state condensate solution in 3d with spherical symmetry. (a) Wave function /gðrÞ versus r for j3 ¼ �7, )6.2472,
)3.1371, 0, 3.1371, 12.5484, 31.371, 125.484, 627.42, 3137.1, 31,371 (in order of increasing width). (b) Chemical potential lg versus jd .

Table 3

Ground state chemical potential lg, maximum value of the wave function /gð0Þ and root mean square size rrms versus the interaction

coefficient jd in 2d with radial symmetry (d ¼ 2)

j2 /gð0Þ rrms lg

Numerical TFA

)5.8 2.1770 0.3208 )5.552 NA

)4.5 0.8948 0.7091 )0.2923 NA

)2.5097 0.6754 0.8775 0.4997 NA

0 0.5642 1.0000 1.0000 NA

3.1371 0.4913 1.1051 1.4200 NA

12.5484 0.3919 1.3068 2.2558 1.9986

62.742 0.2676 1.7881 4.6098 4.4689

313.71 0.1787 2.6044 10.068 9.9928

627.42 0.1502 3.0845 14.1892 14.132

1254.8 0.1262 3.6598 20.0286 19.9854
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We present computations for two cases:

Case I. 87Rb used in JILA with xx ¼ xy < xz [7]. The detailed data are

m ¼ 1:44� 10�25 kg; xx ¼ xy ¼ 20p 1=s; xz ¼ 4xx 1=s; a0 ¼

ffiffiffiffiffiffiffiffiffi
�h

xxm

s
¼ 0:3407� 10�5 m;

jaj ¼ 5:1 nm; j ¼ 4paN=a0 ¼ 0:01881N :

Table 6

Convergence rates of the Thomas–Fermi approximations as 1=j2 ! 0 in 2d (d ¼ 2)

1
j2

1
200

1
400

1
800

1
1600

1
3200

jlg � ls
2j Error 9.004E) 2 6.849E) 2 5.188E) 2 3.915E) 2 2.944E) 2

Rate 0.3947 0.4007 0.4062 0.4112

k/2
g � ð/s

2Þ
2kL1 Error 4.458E) 2 2.975E) 2 1.979E) 2 1.311E) 2 8.753E) 3

Rate 0.5835 0.5881 0.5941 0.5828

k/g � /s
2kL2 Error 1.292E) 1 1.038E) 1 8.336E) 2 6.686E) 2 5.352E) 2

Rate 0.3158 0.3164 0.3182 0.3211

k/g � /s
2kL4 Error 6.613E) 2 5.169E) 2 4.036E) 2 3.149E) 2 2.449E) 2

Rate 0.3554 0.3570 0.3580 0.3627

Table 4

Ground state chemical potential lg, maximum value of the wave function /gð0Þ and root mean square size rrms versus the interaction

coefficient jd in 3d with spherical symmetry (d ¼ 3)

j3 /gð0Þ rrms lg

Numerical TFA

)7 0.7613 0.9512 0.6210 NA

)3.1371 0.4881 1.1521 1.2652 NA

0 0.4238 1.2248 1.5000 NA

3.1371 0.3843 1.2785 1.6774 NA

12.5484 0.3180 1.3921 2.0650 1.4762

31.371 0.2581 1.5356 2.5861 2.1298

125.484 0.1738 1.8821 4.0141 3.7082

627.4 0.1066 2.5057 7.2484 7.059

3137.1 0.0655 3.4145 13.553 13.438

31371 0.0328 5.3852 33.810 33.755

Table 5

Convergence rates of the Thomas–Fermi approximations as 1=j1 ! 0 in 1d (d ¼ 1)

1
j1

1
100

1
200

1
400

1
800

1
1600

jlg � ls
1j Error 1.875E) 2 1.267E) 2 8.528E) 3 5.715E) 3 3.816E) 3

Rate 0.5655 0.5711 0.5775 0.5775 0.5827

k/2
g � ð/s

1Þ
2kL1 Error 9.915E) 3 5.799E) 3 3.451E) 3 2.102E) 3 1.319E) 3

Rate 0.7738 0.7488 0.7151 0.6723

k/g � /s
1kL2 Error 5.709E) 2 4.224E) 2 3.120E) 2 2.305E) 2 1.702E) 2

Rate 0.4346 0.4371 0.4368 0.4375

k/g � /s
1kL4 Error 5.676E) 2 4.278E) 2 3.219E) 2 2.426E) 2 1.828E) 2

Rate 0.4079 0.4103 0.4080 0.4083
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Table 7

Convergence rates of the Thomas–Fermi approximations as 1=j3 ¼ 1=j ! 0 in 3d (d ¼ 3)

1
j3

1
400

1
800

1
1600

1
3200

1
6400

jlg � ls
3j Error 2.169E) 1 1.759E) 1 1.423E) 1 1.147E) 1 9.225E) 2

Rate 0.3023 0.3058 0.3111 0.3142

k/2
g � ð/s

3Þ
2kL1 Error 1.054E) 1 7.732E) 2 5.644E) 2 4.109E) 2 2.977E) 2

Rate 0.4470 0.4541 0.4579 0.4649

k/g � /s
3kL2 Error 2.046E) 1 1.728E) 1 1.457E) 1 1.229E) 1 1.034E) 1

Rate 0.2437 0.2461 0.2455 0.2492

k/g � /s
3kL4 Error 6.524E) 2 5.228E) 2 4.176E) 2 3.336E) 2 2.653E) 2

Rate 0.3195 0.3241 0.3240 0.3305

Fig. 4. Ground-state solution in 3d with cylindrical symmetry under case I. Condensate wave function on two lines for j3 ¼ �4:705,

�1:881, 0, 3:762, 9:405, 18:81, 37:62, 94:05, 188:1, 376:2, 940:5, 1881, 3762 and 15,048 (in order of increasing width): (a) on the line

z ¼ 0 (/gðr; 0Þ); (b) on the line r ¼ 0 (/gð0; zÞ). Surface plots of the condensate wave function /gðr; zÞ: (c) j3 ¼ 15,048 (N ¼ 800,000); (d)

j3 ¼ 188:1 (N ¼ 10,000).
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Case II. 23Na used in MIT (group of Ketterle) with xx ¼ xy � xz [8]. The detailed data are

m ¼ 3:8� 10�26 kg; xx ¼ xy ¼ 720p 1=s; xz ¼ 7p 1=s; a0 ¼
ffiffiffiffiffiffiffiffiffi
�h

xzm

r
¼ 1:1209� 10�5 m;

jaj ¼ 2:75 nm; j ¼ 4paN=a0 ¼ 0:003083N :

In case II, we choose a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=xzm

p
(instead of a0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=xxm

p
) as xz � xx such that the root mean square

size is of Oð1Þ. The other parameters should be adjusted accordingly.
Fig. 4 shows the ground-state condensate wave function along r- and z-axis, /gðr; 0Þ and /gð0; zÞ, re-

spectively, for different j and surface plots of /gðr; zÞ for j¼ 15,408 and j ¼ 188:1, and Table 8 lists lg,

/gð0; 0Þ, rrms, zrms versus j3 ¼ j for case I. Fig. 5 and Table 9 show similar results for case II. Furthermore

Fig. 6 compares the numerical ground-state solution (i.e., numerical solution of (5.9)) and the Thomas–

Fermi approximation in (5.18).

From Figs. 4 and 5, and Tables 8 and 9, we can see that the chemical potential lg and the root mean

square sizes rrms, zrms will increase when the interaction coefficient j3 ¼ j (i.e., the number of atoms in the

condensate) is increasing. On the other hand, the peak of the ground-state solution /gð0; 0Þ will decrease.
Fig. 6 and Tables 8 and 9 show that the Thomas–Fermi approximation are accurate for the chemical

potential and ground-state wave function near the origin only when j is very big, but gives poor ap-

proximation when j is intermediate or in the tail of the wave function.

6.4. Application to compute excited states of GPE

Suppose the eigenfunctions of the nonlinear eigenvalue problem (3.2) under the constraint (3.3) are

�/gðxÞ;�/1ðxÞ;�/2ðxÞ; . . . ;

whose energies satisfy

Ejð/gÞ < Ejð/1Þ < Ejð/2Þ < � � � :

Then /j is called as the jth excited-state solution of the GPE (2.13). In fact, /g and /j (j ¼ 1; 2; . . .) are
critical points of the energy functional Ejð/Þ under the constraint (3.3). In 1d, when V ðxÞ ¼ x2=2 is chosen

as the harmonic oscillator potential and j1 ¼ 0, the excited states are given [33]:

Table 8

Ground state chemical potential lg, maximum value of the wave function /gð0; 0Þ and root mean square sizes rrms, zrms versus the

interaction coefficient j3 ¼ j in 3d with cylindrical symmetry under case I

a (nm) N j /gð0; 0Þ rrms zrms lg

Numerical TFA

)5.1 250 )4.705 0.9926 0.7468 0.3268 1.9294 NA

)5.1 100 )1.881 0.6788 0.9324 0.3476 2.7283 NA

5.1 0 0 0.602 1.000 0.3539 3.000 NA

5.1 1000 18.81 0.3824 1.325 0.3807 4.362 3.022

5.1 5000 94.05 0.2477 1.7742 0.4214 6.680 5.752

5.1 10 000 188.1 0.2023 2.041 0.4497 8.367 7.591

5.1 50 000 940.5 0.1248 2.842 0.5532 14.95 14.45

5.1 100 000 1881 0.1012 3.276 0.6174 19.47 19.06

5.1 400 000 7524 0.0666 4.341 0.7881 33.47 33.19

5.1 800 000 15 048 0.0540 4.992 0.8976 44.02 43.80
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/jðxÞ ¼ 2jj!ð Þ�1=2 1

p

� �1=4

e�x2=2HjðxÞ;

lj ¼ l0ð/jÞ ¼ E0ð/jÞ ¼ j
�

þ 1

2

�
; j ¼ 1; 2; . . . ;

where HjðxÞ is the standard jth Hermite function [33]. Here we show numerically that the algorithm (3.9)

can also be applied to compute any jth excited state of GPE with j1 > 0 provided that we start with the

above jth excited state as initial data for j1 > 0 small and use a continuation technique for j1 > 0 bigger,
i.e., use the numerical solution of the jth excited-state solution for a small j1 as initial guess for computing

Fig. 5. Ground-state solution in 3d with cylindrical symmetry under case II. Condensate wave function on two lines for j3 ¼ 0,

0:15415, 0:6166, 1:5415, 3:083, 6:166, 15:415, 30:83, 61:66, 154:15, 308:3, 924:9, 1541, 3083 and 15,415 (in order of increasing width): (a)

on the line z ¼ 0 (/gðr; 0Þ); (b) on the line r ¼ 0 (/gð0; zÞ). Surface plots of the condensate wave function /gðr; zÞ: (c) j3 ¼ 3083

(N ¼ 1,000,000); (d) j3 ¼ 30:83 (N ¼ 10,000).
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Table 9

Ground state chemical potential lg, maximum value of the wave function /gð0; 0Þ and root mean square sizes rrms, zrms versus the

interaction coefficient j3 ¼ j in 3d with cylindrical symmetry under case II

a (nm) N j /gð0; 0Þ rrms zrms lg

Numerical TFA

2.75 0 0 4.3171 0.0986 0.7077 103.41 NA

2.75 100 0.3083 3.4797 0.0990 0.9842 104.93 NA

2.75 1000 3.083 2.3688 0.1003 1.8842 111.71 NA

2.75 5000 15.415 1.7450 0.1034 3.1169 127.69 NA

2.75 10 000 30.83 1.5082 0.1061 3.8457 141.13 86.11

2.75 50 000 154.15 1.0202 0.1179 6.0508 202.04 163.9

2.75 100 000 308.3 0.8416 0.1267 7.2226 248.1 216.3

2.75 500 000 1541.5 0.5215 0.1588 10.501 432.06 411.80

2.75 1 000 000 3083 0.4226 0.1784 12.203 559.92 543.37

2.75 5 000 000 15 415 0.2598 0.2396 17.070 1044.7 1034.4

Fig. 6. Comparison between the numerical ground state solution and the Thomas–Fermi approximation in 3d with cylindrical

symmetry. (—) Numerical solution of (5.9); (+++) Thomas–Fermi approximation (5.18). For case I: (a) j3 ¼ 15,048 (N ¼ 800,000);

(b) j3 ¼ 188:1 (N ¼ 10,000). For case II: (c) At the line z ¼ 0, i.e., /gðr; 0Þ; (d) At the line r ¼ 0, i.e., /ð0; zÞ.
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the jth excited state of a larger j1. When the algorithm (3.9) is applied to compute jth (j is an odd integer)

excited state in 1d, due to these functions are odd function, the finite element subspace in Section 4 should

be replaced by

Table 10

Energy and chemical potential of the ground state and first four excited states of GPE in 1d (d ¼ 1)

j1 0 3.1371 12.5484 31.371 62.742 156.855 313.71

Ejð/gÞ 0.5000 1.0441 2.2330 3.9810 6.2569 11.464 18.171

Ejð/1Þ 1.5000 1.9414 3.0377 4.7438 6.9998 12.191 18.891

Ejð/2Þ 2.5000 2.8865 3.9039 5.5573 7.7824 12.944 19.629

Ejð/3Þ 3.500 3.8505 4.8038 6.4043 8.5938 13.719 20.383

Ejð/4Þ 4.500 4.8245 5.7252 7.2752 9.4276 14.511 21.150

lg 0.5000 1.5266 3.5966 6.5527 10.369 19.070 30.259

l1 1.5000 2.3578 4.3442 7.2802 11.089 19.784 30.971

l2 2.5000 3.2590 5.1479 8.0432 11.833 20.512 31.691

l3 3.500 4.1919 5.9901 8.8349 12.597 21.252 32.419

l4 4.500 5.1424 6.8598 9.6501 13.381 22.005 33.157

Fig. 7. Excited states of GPE with harmonic oscillator potential in 1d for j1 ¼ 0, 3:1371, 12:5484, 31:371, 62:742, 156:855, 313:71 (in

order of increasing width). (a) First excited state /1ðxÞ (odd function). (b) Second excited state /2ðxÞ (even function). (c) Third excited

state /3ðxÞ (odd function). (d) Fourth excited state /4ðxÞ (even function).
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~VV h
g ¼ /hðrÞ 2 Cð½0;R�Þ j/hðrÞj½rj;rjþ1� 2 P1ð½rj; rjþ1�Þ; 0

n
6 j6M � 1; /hð0Þ ¼ /hðRÞ ¼ 0

o
:

For simplicity, here we only report numerical results in 1d for the first four excited states of GPE for

different j1 P 0. Table 10 shows the energy Ejð/jÞ and chemical potential lj (j ¼ g; 1; 2; 3; 4) of the ground
state and first four excited states of GPE in 1d for different j1. Fig. 7 plots the first four excited wave
functions /jðxÞ (j ¼ 1; 2; 3; 4) versus x for different j1.

From the results in Table 10 and Fig. 7, we can see that the algorithm (3.9) can be applied to compute

the excited states of GPE (2.13). We observed from our numerical results in Table 10 that for any fixed

j1 P 0

Ejð/gÞ < Ejð/1Þ < Ejð/2Þ < � � � ; lg < l1 < l2 < � � � :

This implies that the eigenvalue of (3.2), lg, corresponding to the minimizer of the energy functional Ejð/Þ,
/g, is the minimum chemical potential among all the eigenvalues of (3.2). Furthermore, we have

lim
j1!þ1

Ejð/jÞ
Ejð/gÞ

¼ 1; lim
j1!þ1

lj

lg

¼ 1; j ¼ 1; 2; 3; 4:

A rigorous mathematical justification of these numerical observations is under further study.

7. Conclusions

Ground-state solution of time-independent Gross–Pitaevskii equation of Bose–Einstein condensation at

zero or very low temperature is computed by directly minimizing the energy functional under a constraint

through the finite element discretization. We begin with the 3d Gross–Pitaevskii equation, scale it to obtain
a three-parameter model, show how to reduce it to 2d and 1d GPEs. The ground-state solution is for-

mulated via minimizing the energy functional under a constraint. The finite element approximation for 1d,

2d with radial symmetry and 3d with spherical symmetry and cylindrical symmetry are presented in detail

and approximate ground-state solutions, which are used as initial guess in our practical numerical com-

putation, are provided in two extreme regimes: very weak interactions and strong repulsive interactions.

Numerical results are reported in 1d, 2d with radial symmetry and 3d with spherical symmetry and cy-

lindrical symmetry for condensation with repulsive/attractive interparticle interactions and atoms in it

ranging up to millions to demonstrate the novel numerical method. Our numerical results show that the
Thomas–Fermi approximation are accurate for the chemical potential and ground-state wave function near

the origin only when j is very big, but gives poor approximation when j is intermediate or in the tail of the

wave function. Furthermore extension of our method to compute the excited states of GPE is also pre-

sented. In the future we plan to study physically more complex systems based on this ground-state solution

solver.
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